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Abstract

Impurity-mediated near-infrared (NIR) photoresponse in silicon is of great interest for photovoltaics and
photodetectors. In this paper, we have fabricated a series of n+/p photodetectors with hyperdoped silicon
prepared by ion-implantation and femtosecond pulsed laser. These devices showed a remarkable enhancement on
absorption and photoresponse at NIR wavelengths. The device fabricated with implantation dose of 1014 ions/cm2

has exhibited the best performance. The proposed method offers an approach to fabricate low-cost broadband
silicon-based photodetectors.
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Background
Traditional silicon-based devices could not show desir-
able NIR photoresponse due to limitation of optical
bandgap (1.12 eV) of silicon [1], and many attempts have
been made to enhance the absorptance of silicon material,
especially at NIR wavelengths [2–9]. The discovery of
chalcogen-supersaturated silicon fabricated by laser irradi-
ation in SF6 atmosphere demonstrated an approach to en-
hance the sub-bandgap absorption [10, 11]. In this
process, the material can be doped beyond the solubility
limit [12]. Besides, light trapping effect caused by the
unique pointed cone structure on silicon surface also in-
creases the efficiency of light absorption [13]. In this
paper, we have fabricated hyperdoped silicon prepared by
ion-implantation and femtosecond pulsed laser. Hall
measurement was carried out to measure the electrical
properties of hyperdoped silicon. Photodetectors based on
n+/p junction demonstrated high performances on both
NIR absorption and photoresponse.

Methods
One-side polished p-type silicon [100] wafers (300 μm)
with resistivity 8–12 Ω cm were ion-implanted with
1.2 keV 32S+ into a depth of approximately 40 nm at
room temperature. The implantation doses were 1 ×
1014, 1 × 1015, and 1 × 1016 ions/cm2. Pulsed laser melt-
ing (PLM) was carried out by 1 kHz train of 100 fs,
800 nm femtosecond laser pulses with a fluence of
0.5 J/cm2. Then, laser spot of 200 μm diameter is fo-
cused on the silicon and patterned square areas up to
10 mm × 10 mm. Rapid thermal annealing (RTA) was
implemented at 600 °C for 30 min in a N2 atmosphere.
We determined the absorptance (A) of the samples by

measuring reflectance (R) and transmittance (T) by
using a UV-Vis-NIR spectrophotometer (UV3600, Shi-
madzu, Tokyo, Japan) equipped with an integrating
sphere detector [3]. The absorptance was calculated by
A = 1-R-T. The concentration and mobility of carriers
were measured by Hall Effect measurement system at
room temperature (via van der Pauw technique) [14]. To
investigate whether the impurity/intermediate band
(IB) formed by sulfur impurities in silicon enhances the
sub-bandgap photoresponse, we employed a Fourier-
transform photocurrent spectroscopy method as de-
scribed in Ref. [15, 16], where the chopped FTIR globar
light source is focused onto the sample, and the
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generated photocurrent is then demodulated by an
external lock-in amplifier and finally fed back to the
external port of the FTIR.

Results and Discussion
Figure 1 shows the absorptance of silicon samples im-
planted at different doses. The samples processed with
PLM showed highest absorptance at visible and NIR
wavelengths while as-implanted samples showed lowest
absorptance. However, the annealing process reduces the
absorption in NIR region of spectra. The high Vis-NIR
absorptance of microstructured silicon is ascribed to the
following reasons: hyperdoping-induced impurity band
and microstructured surface-generated light trapping ef-
fect. As illustrated in Fig. 1d, an impurity band induced
by dopants is formed in silicon, which is responsible for
sub-bandgap absorption [17]. Consequently, the hyper-
doped silicon shows high absorptance in NIR range.
Meanwhile, laser melting reconstructs the silicon surface
and produces an array of cones that leads to multiple re-
flection and absorption [13], as displayed in Fig. 1e, f.
The processed annealing evidently reduces absorptance
at NIR wavelengths range, which mainly caused by the
two aspects: (1) annihilate the nanostructures on the sili-
con surface, decreasing the light trapping effect [18]; and
(2) result in the bond rearrangement within silicon
matrix, which optically inactivate sulfur impurities [11].

Because of the similar surface structure created by
same laser parameters, the intensity of absorption in
NIR range mainly depends on the dopant’s impurity
levels [19]. In the past, we have illustrated the possible
S-related energy levels corresponding to the photo-
response spectral features [20]. It showed the large en-
hancement observed at NIR region dependently resulted
from the S-related energy level (~ 614 meV), which
greatly enhanced the sub-bandgap absorptance. Prior to
annealing process, absorption has no dramatic change
with respect to the doping dose as shown in Fig. 2a. The
microstructured silicon with 1016 and 1015 ion/cm2

implantation dose show similar absorptance, and the
sample implanted at 1014 ions/cm2 shows unnoticeable
decrease. We consider the lower absorptance for
annealed samples in NIR range can be ascribed to the
two aspects. M. A. Sheehy et al. [21] proposed the ab-
sorption decrease of below bandgap after annealing
process is attributed to the diffusion out of the crystal-
line grains to the grain boundaries of the supersaturated
dopants and defects. These defects include vacancies,
dangling bonds, and floating bonds. Once the defects
diffuse to the grain boundaries, they would no longer
make a contribution to impurity bands in the Si, thus re-
ducing the absorption of below bandgap radiation.
Moreover, the literature [22] reported that no remark-
able redistribution of S occurred until the annealing
temperature reached at 650 °C. During this process, the

Fig. 1 a–c Dependence of absorptance on different fabrication process with various implantation doses. d Impurity band located within bandgap of Si
facilitates generation of carriers which participate in absorption of lower energy photons. e Scanning electron micrograph of silicon spikes. f Illustration of
optical path on microstructured surface
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S appears to complex with defect clusters, which means
the S atoms will combine with each other at the Si wafer
surface. This phenomenon leads to a reduction of the
active doping concentration.
The carrier density and mobility of microstructured

silicon with different ion-implantation doses are shown
in Fig. 2b. It is evident that sheet density increases with
ion-implantation dose, and mobility decreases with in-
creasing ion-implantation dose. According to Shockley-
Read-Hall (SRH) recombination effect, in an indirect
bandgap semiconductor such as Si and Ge, the carrier
lifetime decreases with the increase of dopant concentra-
tion [23, 24]. The decrease of mobility leads to an in-
crease of recombination probability, so the decrease of
mobility results in a decrease on electron lifetime and
the decrease on mobility with increasing doping dose is
consistent with SRH recombination effect. After annealing,
the sheet carrier density decreases dramatically due to ther-
mal diffusion effect as we discussed previously.
Figure 3 shows the photoresponse with different doping

dose, and the inset shows the diagram of n+/p photo-
detector. The photoresponse at NIR range indicates the ap-
pearance of impurity-mediated band. The prominent peak
at approximately 960 nm corresponds to the generation of
electron-hole pairs in silicon substrate, which are separated
by the built-in potential of n+/p junction and collected at
the top and bottom Al contacts. This phenomenon is well
known as the heterojunction theory in Si devices [25].
The observed photoresponse in NIR is ascribed to the

sulfur impurity levels in hyperdoped silicon. Such impur-
ity levels facilitate the below bandgap absorption as
mentioned above. The absorbed NIR light is converted
into electron-hole pairs, resulting in the enhancement of
photoresponse in NIR range (1100 ~ 1600 nm) [20]. The
device with implantation dose of 1014 ions/cm2 shows
the highest photoresponse in the wavelength range of
1010–1100 nm. The broad peak has been investigated
owning to deep sulfur levels in femtosecond laser-
processed silicon [20, 26]. In addition, we found that

the device with 1014 ions/cm2 has showed higher
photoresponse than those with 1015 and 1016 ions/cm2.
And the Hall measurement indicated that the sample
implanted at 1014 ions/cm2 had a bulk concentration
of 1019 ions/cm3. As demonstrated by SRH recombin-
ation effect, carrier lifetime depends on dopant con-
centration in silicon. E. Mazur has concluded that the
sample with 1019 ions/cm3 dopant concentration was
expected to show longer carrier lifetime than 1020 and
1021 ions/cm3 [23]. Our Hall measurement results,
sample implanted at 1014 ions/cm2 shows the highest
mobility, are in agreement with the conclusion. Based
on this theory, although a sample with higher doping
dose shows greater absorptance, there is still a balance
between optical absorption and carrier mobility. As
presented in Fig. 3, the device with 1014 ions/cm2 is
most probable to show the highest photoresponse,
which is consistent with the conclusion reported in
Ref. [23].

Fig. 2 a Dependence of absorptance on different ion-implantation dose. All samples were microstructured by PLM. b Electronic properties of
reference silicon and microstructured silicon for different ion-implantation dose before annealing and one after annealing

Fig. 3 Photoresponse of n+/p detectors with different ion-implantation
dose. Inset shows the top view and sectional view of the device. Light
gray shows the patterns of interdigitated contact on microstructured
surface and all standing contact on backside
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Conclusions
We have measured the response of photodetectors based
on microstructured silicon with different ion-implantation
dose. The incorporation of impurities leads to a remark-
able enhancement on absorptance and photoresponse at
NIR wavelengths. And device implanted at 1014 ions/cm2

exhibits the highest photoresponse. PLM combined with
ion-implantation demonstrates a considerable technique
for the fabrication of NIR detectors. This technique may
offer a feasible approach to fabricate low-cost broadband
silicon-based photodetectors.
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